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Introduction

Context: The Original Paper!

@ Focus on transformer-based models for supervised learning.

@ Exploration of in-context learning in Reinforcement Learning.
@ Introduction of the Decision-Pretrained Transformer (DPT).
o

Potential in sequential decision-making and regret guarantees.

Our Research: Divergence and Novel Contributions

Builds on the above work.

Deviates from the assumption of sampling from the optimal policy.
Introduces imitation learning loss and reward reweighting.
Focuses on practical applicability in real-world scenarios.

Aims for minimal performance loss in offline datasets.

!Lee et al., Supervised Pretraining Can Learn In-Context Reinforcement Learning,
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Related Concepts

In-context Learning

o Transformative Approach: In-context learning enables models to
generalize from limited examples by extracting knowledge from the
context.

o Adaptation and Generalization: Models adapt to various tasks
using suitable contextual prompts without parameter updates.

o Application in Decision-Making: Utilize state-action-reward tuples
to understand interactions with unknown environments.

o Understanding Dynamics: Leverage these interactions to
comprehend dynamics and identify actions for favorable outcomes.

Reward Reweighting

@ Influence on Learning Dynamics: Reward weighting alters learning,
promoting behaviors associated with higher rewards.
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More In-context Learning

@ Origin: Popularized in the original GPT-3 paper.
@ Process:

@ Give the LM a prompt that consists of a list of input-output pairs that
demonstrate a task.

@ At the end of the prompt, append a test input

© Predict the next tokens conditioning on the prompt.

@ Model's Task:

Understand the input distribution.
Recognize the output distribution.
Determine the input-output mapping.

o
[}
o
o Comprehend the formatting of the input and output.
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[llustration

Circulation revenue has increased by 5% Circulation revenue has increased by
in Finland. // Positive 5% in Finland. // Finance

Panostaja did not disclose the purchase They defeated ... in the NFC

price. // Neutral Championship Game. // Sports
Paying off the national debt will be Apple ... development of in-house
extremely painful. / Negative chips. // Tech

The company anticipated its operating The company anticipated its operating
profitto improve. // profit to improve. //

For example, the LM uses the training examples to internally figure out
that the task is either sentiment analysis (left) or topic classification
(right) and apply the same mapping to the test input.
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Decision model: multi-armed bandit

e Specified by a tuple £ = (A, R), where A is the action space and
R : A— A(R) is the reward function.

State space is trivial (a single state), with no state transitions.
The process:

@ At each step t, the agent selects an action a; from A.

Q Areward r, ~ R(+|a) = N(pa,0?) s.t. 1z = unif[0,1] and o = 0.3.
Policy m maps from the single state to a probability distribution over
actions, determining which arm to pull.

The optimal policy 7" maximizes the expected total reward
V(1*) = max; V(7)) = max E[)>_, ri].
@ Learn to decide which arm to pull to maximize cumulative reward
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Problem Formulation (Theory Borrowed)?

Goal-Conditioned Reinforcement Learning:
@ Goal space G defined with a state-to-goal mapping ¢.

@ In our case, to fit into in-context learning, the goal is defined as the
trajectory history.

@ Reward function r(s, g) and policy 7(als, g) depend on the goal g.

@ Objective is to maximize the discounted return: J(m) where + is the
discount factor. Usually, v = 0.9

a -

J(W) = Eg’“P(Q)ysoNuoﬂt"Jﬂ'('|5t,9),5t+1~T('|St,at) Z’ytr(st;g)
t=0

2Ma et al., Offline Goal-Conditioned Reinforcement Learning via f-Advantage
Regression
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Goal-Conditioned State-Action Occupancy

Goal-Conditioned Occupancy Distribution:
o Defined as d" (s, a; g)

. , o _
d"(s,039) = (1 —7) 3. 7'Pr(s; = 5,0 = a | s0 ~ o, as ~ (543 9), 141 ~ Ts1,az)
t=0

o Captures the relative frequency of state-action visitations conditioned
on a goal.
@ Subject to the Bellman flow constraint

Zd(s,a;g):(l +fyZT d(s,a; g9), Vse S,ge G

3,a
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Algorithm Introduction

Goal-Conditioned f-Advantage Regression (GoFAR):
Maximizing the discounted return = state-occupancy matching objective

Given any function r(s; g), define the target distribution p(s; g) = Z(g)

where Z(g) == [ e" (s:€)ds is the normalizing constant. Then:
—Dia(d"(s; 8)llp(s: g)) + € = (1 = )J(7) + H(d"(s; 8))

where C :=Egpg)llog Z(g)] and H(d™(s; g)) = Egr(s.q)llog d"(s; g)]

Definition

The f-divergence of p and q is: (for KL-divergence, f(x) = x log x)

Dr(pllg) = Ex~q [f (58)]
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Proof of Theorem

Proof. We have that
(1 =)J ()
=Egp(g)Es~ar(s9) [F(5; 9)]
=Egrp(g)Bsnar(s;9) |108 er(*g)]

e"(%9) Z(g)
_°g Z(g) ]

T(svg)
=Egp(g)Esndr (sig) log Z(g) } + Egp(g)llog Z(g)]

) (59
=Egrp(g)Esndr(s;) |10 Z(q) 'dw(s. )] +C

1
—

:E9~p(g)]ES~d"(S;g)

—
Q

[ p(s;9)
=Ky p(g)Esmdr(s;g) |108 " (s; )] + Egp(g)Ear (s;9) [log d” (s; )] + C

=E,p(g) [-Dk1(d"(539) Ip(5: 9)) — H(d" (53 9))] + C
Rearranging the inequality gives the desired result.
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For any f-divergence that upper bounds the KL-divergence,

—Dki(d™(s: g)llp(s: &) >

p\s: 8 T
Biser-avtos) 108 -] = D1(d"(s.3:8)]14%(s,3:)

® R(s;g) =log dp()((s;g;): reward that encourages visiting states that
occur more often in the “expert” state distribution p(s; g) than in the
offline dataset

@ Utilizes the offline dataset do(s;g), suitable for offline learning

Jiaxin Ye (Affiliation) Presentation November 17, 2023 12 /22



Proof of Theorem

Lemma B.1. For any pair of valid occupancy distributions d, and d2, we have
Dkw(di(s; 9)lld2(s;9) < Dxw(di(s, a; 9)lld2(s, a; 9))

Proof. This lemma hinges on proving the following lemma first.

Lemma B.2.
Dkw (di(s, a,5';9)|lda(s, a, 5'; 9)) = Dkw (di (s, a; 9)||d2(s, a; 9))
Proof.
DkL (dl(sa a, S’;g)”dQ(S, a, Sl;g))
di(s,a39) - T(s' | 5,0)
= di(s,a,s’;9)lo R ' ds'dadsd
L e m traey 9
di(s,a59) ,,
= p(g9)di(s,a,s’; g)log ————"2ds' dadsdg
/S><A><S><G ( ) 1( ) d2(saa§g)
di(s, a; 9)
= p(g9)d1 (s, a; g) log ———"dadsdg
/SXAXG (g)da( ) da(s,a; g)

=Dk, (d1(s,a;9)|d2(s,a; 9))
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Proof of Theorem

Using this result, we can prove Lemma B.1:
Dk (di(s, a; 9)l|d2(s, a; 9))
=Dx1, (di(s, a,5'; 9)|d2(s,a,5'; )

di(s,a;9) - T(s' | s,a)
= p(9)di(s,a,5'; g) log ds'dadsdg
[ e v m ey

= di(s;9)m(a | s,9)T(s" | s,a)lo i 5a
[ sadsame] 50T |sa)los e T e

.
S
—~
»
8
@
N
N
=
m\
&

ds'dadsdg

»

IS
)
N

:/ (9)d1(s;9)mi(a|s,9)T(s" | s a)logg E ;d 'dadsdg

mi(a]s,9)T(s' | s,a)
ma(a | s,9)T(s' | 5,a)
_ ) di(s; 9) . mi(a|s,g)
_/p(g)dl(s, 9) logd 5; g)dsdg+/ (9)d1(s;9)m1(a | s,9)log mdadsdy
=Dxr, (di(s; 9)lld2(s; 9)) + Dk (m1(a | s,9)[m2(a | 5,9))

>Dxr (di(s; 9)lld2(s; 9))

+ / p(9)di(s; 9)mi(a | s,9)T(s" | s,a)log ds'dadsdg
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Proof of Theorem

Now given these technical lemmas, we have
D1, (d"(s; 9)p(s; 9))

T (e 0 ( o
= / p(g)d" (s; 9) log 2(25;799)) : ZOE?Z;

/ (9)d" (s; ) log d (( ))dsdg + / p(9)d” (s; 9) log dO(( g)) dsdg

dsdg, we assume that d°(s; g) > 0 whenever p(s; g) > 0.

<E(s,g)~dr(s,9) [1 p(( ))} + Dk, (4" (s, a5 9)[|d° (s, a3 9))

where the last step follows from Lemma B.1. Then, for any D ¢ > Dkr,, we have that

~Dia (@ (59)P(519)) > Bt 108 33700 | =Dy (& (5,059 |4(s,059)) G

Then, since E(, gy~dn(s,g) [log M] > 0, we also obtain the following looser bound:

—Dxv (d7(5;9)Ip(5; 9)) > E(s,g)mdr (s,9) [l0g p(5;9)] — Dy (d7 (5,05 9)[|d° (s,a59))  (32)
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Optimization Problem

Recall that
—Dki(d™(s; g)llp(s; &) >

E(s,g)Nd”(S,g) [Iog dpo((ssgg))} - Df(dw(57 a;g)Hdo(sv a; g))

Because p(s; g) o e(58) R(s; g) = log p(( g)) x r(s; g).

Thus, the optimization problem becomes (with the Bellman constraint),

amax B g)nags ) [r(s:9)] = Dy(d(s, a; 9)[1d°(s, a; 9))
(870”9)20

(P) st Y d(s,a;9) = (L—)po(s) +7 ) T(s|5,a)d3,ag),Vs € S,g€C
which still requires sampling from d(s; g), not ideal for offline setting. Can

reduce to an unconstrained optimization problem to retrieve the value
function.
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Dual Problem

The dual problem to the above theorem is

V(Tgi?zo(l = NE(s.) o)V (55 )]+

E(sag)~dolf(R(sig) +7TV(s,a;g) — V(s; g))]

where f, denotes the convex conjugate function of f, V(s; g) is the
Lagrangian vector, and TV (s, a; g) = Eg..7(s,2)[V(s"; )]

v

Observation: neither expectation depends on samples from d, thus can be
estimated entirely using offline data, making it suitable for offline GCRL.

Once obtained the optimal V*, learn the policy via the following
supervised regression update:
mq?*xngp(g)E(s,a)NdO(s,a;g) [(fi(R(s,g) + IVTV*(‘S; a;g) - V*(s,g)) logﬂ'(a | s,g)]
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Proof of Theo

Proof. We begin by writing the Lagrangian dual of the primal problem:
E 1 -D 19)[1d° (s, a;
V(s g)>0d(sag)>0 (s,9)~d(s,9) [Og (T( ag))] f(d(37avg)”d (s,a,g))

(35)
+> p(9)V(s;9) ((1 —uo(s) +v Y T(s | 5,a)d(3,a; 9) - Zd(s a;g )

3,8
where p(g)V (s; g) is the Lagrangian vector. Then, we note that

Zng)ZT(s|sa)dsag stagZTs|sa ;g):Zd(s,a;g)TV(s,a;g)

5,a s,a,9 $,a,9
(36)
Using this, we can rewrite (35) as
(1 = NE(s,9)~ (0.0 [V (85 9] + E(s,0,9)~a [(7(85.9) + 7TV (5,03 9) — V(53 9))]

—Dy(d(s,a;9)[1d°(s, a; 9))

min max
V(s;9)20d(s,a;9)20

€0
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Proof of Theorem

And finally,
v é’f,?zo(l —NE(s,9)~(uo,p(e) [V (55 9)] + d(s{ralgzol%,a,gw [(r(s,9) + 7TV (s,a;9) — V(s;9))]

— Dy (d(s,a;9)d°(s,a; 9))
(38)
Now, we make the key observation that the inner maximization problem in (38) is in fact the Fenchel
conjugate of D¢(d(s,a,g)||d°(s,a,g)) at r(s,g) + YTV (s,a,9) — V(s,g). Therefore, we can
reduce (38) to an unconstrained minimization problem over the dual variables

V(Isn;)n>0(1 - ’Y)]E(s,g)~p,o,p(g) [V(S;g)] + ]E(s,a,g)~do [f* (T’(S, g) + ’YTV(S: a; g) - V(S; g))] 3
} (39)
and consequently, we can relate the dual-optimal V* to the primal-optimal d* using Fenchel duality
(see Appendix A:
d*(s,a;9) = d°(s,a;9), (r(s,9) +7TV*(s,0,9) = V*(5,9)) Vs € S,a € 4, g € G, (40)
as desired. O
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Adapted to the Bandit Case

max Bgp()E(s,0)~d0 (s,a19) [(fu(R(s;9) + 7TV (s5,059) = V" (s;9)) logm(a | 5, 9)]

Since we're considering the bandit case where there is only one state, there
is no discount factor v needed. Also, since there are no future states—only
immediate rewards—the "value” of taking an action is typically just the
expected immediate reward of that action. Thus, training for a optimal
policy is reduced to:

max Egp(g)E(a)~do(a; ol(fl(R(a;g)) - logm(alg)]
For KL-divergence, f(x) = xlog x, D, ¢(y) = log Ex~q[exp y(x)], so
max g p(g)E(a)~d0 (a:q) [exP(R(a: &) - log m(alg)]

The loss function is the following for the bandit case: (reward reweighting)

L(r) == _[exp(Rj(a; g)) - log m(alg)]

J€ln]
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Algorithm

Algorithm 1 Decision-Pretrained Transformer Reward Weighted (DPT-RW): Training and Deploy-
ment

9:
10:
11:
12:

1
2
3
4:
5:
6
7
8

: // Collecting pretraining dataset

: Initialize empty pretraining dataset B

: for i in [N] do

Sample task 7 ~ T, in-context dataset D ~ Dpre('; T), query state Squery ~ Dauery

Sample label a ~ P, and add (Squery, D, @) to B

: end for

: // Pretraining model on dataset

: Initialize model My with parameters 6

for ¢ in [E] do
Sample (Squery, D, a) from B and predict p;(-) = Mo (:|Squery, D;) forall j € [n]
Compute loss in (1) with respect to a and backpropagate to update 6.

end for

: // Offline test-time deployment

: Sample unknown task 7 ~ Trest, sample dataset D ~ Diest(+; 7)

: Deploy My in 7 by choosing a;, € arg max,c 4 Mo(a|sp, D) atstep h

: // Online test-time deployment

: Sample unknown task 7 ~ D and initialize empty D = {}

: for ep inmax_eps do

Deploy My by sampling ay, ~ My(:|sn, D) at step h
Add (s1,a1,71,...)to D
: end for
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Test Results

2

o

Left (offline): suboptimality u% — s where 4 is the chosen action;
achieving a performance metric of 0.1 after 50 steps

Right (online): cumulative regret ), p% — pug, where d is the kth chosen
action; exhibiting a logarithmic trend, with final regret just above 10
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