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Introduction

Context: The Original Paper1

Focus on transformer-based models for supervised learning.

Exploration of in-context learning in Reinforcement Learning.

Introduction of the Decision-Pretrained Transformer (DPT).

Potential in sequential decision-making and regret guarantees.

Our Research: Divergence and Novel Contributions

Builds on the above work.

Deviates from the assumption of sampling from the optimal policy.

Introduces imitation learning loss and reward reweighting.

Focuses on practical applicability in real-world scenarios.

Aims for minimal performance loss in offline datasets.

1Lee et al., Supervised Pretraining Can Learn In-Context Reinforcement Learning,
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Related Concepts

In-context Learning

Transformative Approach: In-context learning enables models to
generalize from limited examples by extracting knowledge from the
context.

Adaptation and Generalization: Models adapt to various tasks
using suitable contextual prompts without parameter updates.

Application in Decision-Making: Utilize state-action-reward tuples
to understand interactions with unknown environments.

Understanding Dynamics: Leverage these interactions to
comprehend dynamics and identify actions for favorable outcomes.

Reward Reweighting

Influence on Learning Dynamics: Reward weighting alters learning,
promoting behaviors associated with higher rewards.
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More In-context Learning

Origin: Popularized in the original GPT-3 paper.

Process:
1 Give the LM a prompt that consists of a list of input-output pairs that

demonstrate a task.
2 At the end of the prompt, append a test input
3 Predict the next tokens conditioning on the prompt.

Model’s Task:

Understand the input distribution.
Recognize the output distribution.
Determine the input-output mapping.
Comprehend the formatting of the input and output.
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Illustration

For example, the LM uses the training examples to internally figure out
that the task is either sentiment analysis (left) or topic classification
(right) and apply the same mapping to the test input.
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Decision model: multi-armed bandit

Specified by a tuple ξ = ⟨A,R⟩, where A is the action space and
R : A → ∆(R) is the reward function.

State space is trivial (a single state), with no state transitions.
The process:

1 At each step t, the agent selects an action at from A.
2 A reward rt ∼ R(·|a) = N(µa, σ

2) s.t. µa = unif [0, 1] and σ = 0.3.

Policy π maps from the single state to a probability distribution over
actions, determining which arm to pull.

The optimal policy π∗ maximizes the expected total reward
V (π∗) = maxπ V (π) = maxπ E [

∑
t rt ].

Learn to decide which arm to pull to maximize cumulative reward
with limited knowledge about true reward distributions.
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Problem Formulation (Theory Borrowed)2

Goal-Conditioned Reinforcement Learning:

Goal space G defined with a state-to-goal mapping ϕ.

In our case, to fit into in-context learning, the goal is defined as the
trajectory history.

Reward function r(s, g) and policy π(a|s, g) depend on the goal g .

Objective is to maximize the discounted return: J(π) where γ is the
discount factor. Usually, γ = 0.9

2Ma et al., Offline Goal-Conditioned Reinforcement Learning via f-Advantage
Regression
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Goal-Conditioned State-Action Occupancy

Goal-Conditioned Occupancy Distribution:

Defined as dπ(s, a; g)

Captures the relative frequency of state-action visitations conditioned
on a goal.

Subject to the Bellman flow constraint
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Algorithm Introduction

Goal-Conditioned f-Advantage Regression (GoFAR):
Maximizing the discounted return = state-occupancy matching objective

Theorem

Given any function r(s; g), define the target distribution p(s; g) = er(s;g)

Z(g) ,

where Z (g) :=
∫
er(s;g)ds is the normalizing constant. Then:

−DKL(d
π(s; g)||p(s; g)) + C = (1− γ)J(π) +H(dπ(s; g))

where C := Eg∼p(g)[logZ (g)] and H(dπ(s; g)) = Edπ(s;g)[log d
π(s; g)]

Definition

The f -divergence of p and q is: (for KL-divergence, f (x) = x log x)

Df (p||q) = Ex∼q

[
f

(
p(x)

q(x)

)]
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Proof of Theorem
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Theorem

Theorem

For any f-divergence that upper bounds the KL-divergence,

−DKL(d
π(s; g)||p(s; g)) ≥

E(s,g)∼dπ(s,g)

[
log

p(s; g)

dO(s; g)

]
− Df (d

π(s, a; g)||dO(s, a; g))

R(s; g) = log p(s;g)
dO(s;g)

: reward that encourages visiting states that

occur more often in the “expert” state distribution p(s; g) than in the
offline dataset

Utilizes the offline dataset dO(s; g), suitable for offline learning
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Proof of Theorem
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Proof of Theorem
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Proof of Theorem
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Optimization Problem

Recall that
−DKL(d

π(s; g)||p(s; g)) ≥

E(s,g)∼dπ(s,g)

[
log p(s;g)

dO(s;g)

]
− Df (d

π(s, a; g)||dO(s, a; g))

Because p(s; g) ∝ er(s;g), R(s; g) = log p(s;g)
dO(s;g)

∝ r(s; g).

Thus, the optimization problem becomes (with the Bellman constraint),

which still requires sampling from d(s; g), not ideal for offline setting. Can
reduce to an unconstrained optimization problem to retrieve the value
function.
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Dual Problem

Theorem

The dual problem to the above theorem is

min
V (s;g)≥0

(1− γ)E(s,g)∼µ0,p(g)[V (s; g)]+

E(s,a,g)∼dO [f∗(R(s; g) + γTV (s, a; g)− V (s; g))]

where f∗ denotes the convex conjugate function of f , V (s; g) is the
Lagrangian vector, and TV (s, a; g) = Es′∼T (|s,a)[V (s ′; g)]

Observation: neither expectation depends on samples from d , thus can be
estimated entirely using offline data, making it suitable for offline GCRL.

Once obtained the optimal V ∗, learn the policy via the following
supervised regression update:
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Proof of Theorem
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Proof of Theorem
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Adapted to the Bandit Case

Since we’re considering the bandit case where there is only one state, there
is no discount factor γ needed. Also, since there are no future states—only
immediate rewards—the ”value” of taking an action is typically just the
expected immediate reward of that action. Thus, training for a optimal
policy is reduced to:

max
π

Eg∼p(g)E(a)∼dO(a;g)[(f
′
∗(R(a; g)) · log π(a|g)]

For KL-divergence, f (x) = x log x , D∗,f (y) = logEx∼q[exp y(x)], so

max
π

Eg∼p(g)E(a)∼dO(a;g)[exp(R(a; g) · log π(a|g)]

The loss function is the following for the bandit case: (reward reweighting)

L(π) = −
∑
j∈[n]

[exp(Rj(a; g)) · log π(a|g)]
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Algorithm
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Test Results

Left (offline): suboptimality µ∗
a − µâ where â is the chosen action;

achieving a performance metric of 0.1 after 50 steps
Right (online): cumulative regret

∑
k µ

∗
a − µâk where âk is the kth chosen

action; exhibiting a logarithmic trend, with final regret just above 10
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